Is AI a Promising Progression in Wind Energy Industry?

Energy Tech Review | Wednesday, September 11, 2019

More in News

In today's world, when technology is integral to almost every business, sophisticated digital solutions are replacing conventional methods of monitoring critical infrastructure. In instance, tank monitoring has changed from manual, on-site inspections to automated, remote systems that offer real-time data. This change creates new vulnerabilities even while it offers substantial advantages in terms of accuracy, efficiency, and cost savings. Strong cybersecurity safeguards are essential as these systems grow more linked with business networks and the internet. Safeguarding Critical Infrastructure To effectively mitigate cybersecurity risks, organizations must adopt a comprehensive, multi-layered approach that integrates technological safeguards, procedural controls, and human awareness. One critical strategy is network segmentation, which ensures that tank monitoring systems remain isolated from the corporate network, preventing breaches in one domain from compromising operational technology (OT) systems. Equally important is the enforcement of strong authentication and access control, including multi-factor authentication (MFA) and role-based access control (RBAC), to restrict system access strictly to authorized personnel. Regular audits and vulnerability assessments, such as penetration testing and security reviews, are also essential for proactively identifying and addressing weaknesses before they can be exploited. To secure data integrity, organizations should implement robust encryption protocols for all transmissions between sensors, telemetry units, and central monitoring platforms, safeguarding against unauthorized interception or tampering. Advanced intrusion detection and prevention systems (IDPS) add another layer of defense by continuously monitoring network activity, blocking malicious traffic, and alerting administrators to potential threats. Employee training and awareness programs play a vital role, as human error remains a leading cause of breaches. Equipping staff with knowledge on recognizing phishing attempts and following cybersecurity best practices can significantly reduce these risks. A clearly defined incident response plan is indispensable, outlining the procedures for containment, recovery, communication, and collaboration with law enforcement in the event of an attack. The Future of Cybersecurity for Tank Monitoring The cyber threat landscape is constantly evolving, requiring organizations to adapt and strengthen their defensive strategies continually. Attackers are increasingly leveraging artificial intelligence (AI) and machine learning (ML) to automate attacks and craft compelling social engineering campaigns. At the same time, these technologies are playing a critical role in defense, enabling automated threat detection and anomaly monitoring. AI-powered systems can process vast volumes of data from sensors and network traffic to uncover suspicious patterns that may go undetected by human analysts. In parallel, the adoption of Zero Trust Architecture (ZTA) has become essential, as the traditional perimeter-based security model is no longer sufficient. Built on the principle of “never trust, always verify,” Zero Trust requires every user, device, and application—regardless of location—to be authenticated and authorized before gaining access to resources. Equally important is supply chain security. Tank monitoring systems often rely on hardware and software sourced from multiple vendors, creating potential vulnerabilities at various points in the supply chain. A compromised sensor component or a malicious software update could introduce significant risks. Proactive supply chain risk management is therefore a fundamental pillar of any robust security framework. As tank monitoring systems generate increasingly large volumes of data, reliance solely on cloud processing can create latency and bandwidth challenges. Edge computing addresses these issues by enabling data processing closer to the source, such as directly on monitoring devices. Beyond performance benefits, this approach enhances security by allowing devices to detect and respond to threats in real-time, while reducing dependence on a centralized server that could otherwise represent a single point of failure. The integration of technology into tank monitoring has ushered in an era of unprecedented efficiency and control. However, it has also introduced a new set of risks that cannot be ignored. The consequences of a cyber-attack on this critical infrastructure can be severe, making robust cybersecurity a non-negotiable part of any modern tank monitoring system. By adopting a comprehensive, multi-layered approach that combines advanced technology, strict protocols, and continuous training, organizations can protect their assets, ensure operational continuity, and safeguard the environment from the growing threat of cybercrime. The future of tank monitoring is digital, but its security must be a priority today. ...Read more
Europe is leading the way in the rapid development of the hydrogen economy, which is no longer just a far-off dream. The hydrogen fuel cell industry is drawing substantial investment as the continent intensifies its decarbonization efforts. This has resulted in a surge of initial public offers (IPOs) and a new area of interest for analysts and investors. The Driving Force: European Policy and Ambition Europe’s hydrogen sector is experiencing a significant investment boom, driven primarily by strong and coordinated policy support at the EU level. The European Union has set ambitious targets to produce 10 million tonnes of renewable hydrogen and import an additional 10 million tonnes by 2030, underscoring the role of hydrogen in the region’s decarbonisation strategy. Central to this effort is the REPowerEU Strategy, which aims to reduce dependence on fossil fuels and accelerate the green transition, with hydrogen serving as a cornerstone. Complementing this, the Hydrogen and Decarbonised Gas Market Package aims to establish dedicated infrastructure and an efficient market framework for hydrogen deployment. The EU has also approved several Important Projects of Common European Interest (IPCEIs), including Hy2Tech, Hy2Use, and Hy2Infra. These initiatives channel billions of euros in public funding into the hydrogen value chain, leveraging private investment to support production, storage, and end-user applications across various sectors, including mobility and industry. Investment Trends and What Analysts Are Watching Analysts observing the European hydrogen market note that investment activity is expanding well beyond IPO dynamics, shaping the sector’s trajectory. A significant trend is the transition from “grey” to “green” hydrogen, as policy support and market incentives drive companies to innovate in electrolysis technologies powered by renewable energy. Project pipelines and government funding allocations are being closely tracked to identify which players are securing the most substantial green hydrogen contracts. Another area of focus lies in “hard-to-abate” industries, including heavy transport, steel, cement, and chemical manufacturing, where hydrogen offers decarbonization solutions that electrification alone cannot deliver. Companies developing fuel cell technologies or enabling hydrogen infrastructure for these sectors are attracting significant investor attention, particularly those with strong partnerships and demonstrable pilot projects. Beyond applications, analysts are scrutinising the entire hydrogen value chain—from electrolyser manufacturing and storage solutions to pipelines and refuelling infrastructure—with firms such as Hexagon Purus in storage and OPmobility in integrated systems emerging as pivotal contributors. Finally, the role of public-private collaboration remains central, with multi-billion-euro Important Projects of Common European Interest (IPCEIs) underscoring governmental commitment. The participation of private companies in these initiatives is viewed as a strong indicator of scalability and long-term business potential within the hydrogen ecosystem. The European hydrogen fuel cell market is projected to grow substantially over the next decade. As the continent continues to push for a carbon-neutral future, well-positioned companies with robust technology and strong government backing are likely to thrive. For investors, the key is to look beyond the hype and focus on companies with a clear pathway to profitability, strong partnerships, and a strategic position within the burgeoning European hydrogen value chain. The coming years will be crucial in determining which players emerge as leaders in this new energy landscape. ...Read more
Europe is leading the global shift towards electrification, with electric vehicles and renewable energy storage systems becoming crucial for sustainability. The battery, a critical component, is at the heart of this transition. Traditionally, battery health monitoring has been reactive, but predictive algorithms are transforming battery management and maintenance across Europe, addressing issues before they arise.  The Rise of Predictive Algorithms: A Paradigm Shift At the heart of predictive battery health monitoring are advanced algorithms that process both historical and real-time data collected from sensors embedded within battery packs. This process begins with high-resolution data collection, where sensors continuously monitor key parameters, including voltage, current, temperature, charge and discharge cycles, and internal impedance. The collected data is typically aggregated and processed on cloud-based platforms, enabling scalable analysis of large datasets. Machine learning plays a central role in interpreting this data. Algorithms such as XGBoost, Random Forest, Decision Trees, and Long Short-Term Memory (LSTM) networks are trained to recognise intricate patterns and correlations between battery usage behaviours and signs of degradation. These models facilitate accurate predictions of a battery's State of Health (SOH)—its condition relative to a new battery—and its Remaining Useful Life (RUL), providing crucial insight into how long the battery can continue to operate effectively. Predictive algorithms excel at detecting anomalies, such as the early onset of faults in individual cells, which may otherwise go unnoticed. Based on the analysis, the system can also generate actionable recommendations for optimising operational parameters, including charging strategies, usage patterns, and thermal management. This not only helps in extending the battery's lifespan but also enhances overall performance and reliability. The Regulatory Landscape and Future Outlook The European Union’s Battery Regulation (EU) 2023/1542, which came into effect in February 2024, marks a significant step toward advancing sustainable battery practices across the lifecycle, from production to end-of-life management. A cornerstone of the regulation is the introduction of mandatory digital passports for industrial and electric vehicle (EV) batteries, effective from February 2027. These digital passports will serve as comprehensive repositories of data on battery characteristics, performance metrics, and environmental impact. This requirement not only enhances transparency but also underscores the growing importance of advanced battery monitoring systems, data collection, and predictive analytics in meeting regulatory and sustainability goals. As Europe’s transition to electrification accelerates, the future of battery health monitoring is becoming increasingly dependent on predictive algorithms. With continuous advancements in battery technology, these algorithms are expected to evolve in both complexity and capability. Key developments on the horizon include the deployment of more sophisticated digital twins—virtual models that simulate battery behaviour and degradation with high precision under varied conditions, allowing for enhanced performance optimisation. Predictive analytics from stationary energy storage systems will be increasingly integrated into smart grid infrastructures, contributing to improved grid stability and operational efficiency. The standardisation of data protocols will also play a pivotal role in enabling interoperability and fostering innovation across the battery ecosystem. Predictive tools will also be essential in evaluating the residual value of used batteries, thus supporting second-life applications and reinforcing the circular economy. Predictive algorithms are not just an incremental improvement; they are a transformative force in battery health monitoring in Europe. This focus on sustainability offers a promising outlook for the future of battery technology. ...Read more
The industrial heater manufacturing sector in Canada's energy technology industry is driven by efficiency, environmental stewardship, and technological advancement. Cutting-edge technology plays a significant role in enhancing efficiency and introducing new possibilities.  Market Dynamics and Growth Trajectories The Canadian industrial heating equipment market is not just growing, but it's also a promising field for potential profit. Projections indicate a robust expansion in the coming years, driven by the country's ongoing industrial activities and the imperative for modernization across various sectors. This includes manufacturing, oil and gas, chemical processing, food and beverage, and pulp and paper. While Canada's overall heating equipment market is substantial, specific segments within industrial heating, such as furnaces and boilers, are seeing significant evolution, presenting a wealth of opportunities for investors. One significant trend is the increasing adoption of electric heating solutions. This shift is not just about energy efficiency, but also about a growing awareness of environmental concerns. The compatibility of electric heaters with renewable energy sources further amplifies their appeal, aligning with broader sustainability goals. For instance, the industrial furnace market in Canada is projected to witness a compound annual growth rate of over 5 percent from 2025 to 2030, with electric arc furnaces identified as a significant revenue-generating segment. This signifies a clear move towards cleaner and more sustainable heating methods. It's not just about new installations; the retrofit market is also a crucial player in modernizing the Canadian industrial heating market. Aging industrial infrastructure necessitates upgrades to comply with modern efficiency standards and reduce operational costs and environmental footprints. This ongoing demand for system modernization, particularly in the retrofit market, provides a consistent impetus for manufacturers to develop and deploy advanced heating solutions. Technological Innovations Driving Efficiency and Sustainability Innovation is at the core of the Canadian industrial heater manufacturing industry, particularly as it navigates the transition to a lower-carbon economy. The focus is on developing technologies that provide adequate heat and minimize energy waste and greenhouse gas emissions. One of the most impactful innovations is the growing integration of smart technology and the Internet of Things (IoT) into industrial heating systems. IoT-enabled devices facilitate real-time monitoring of boiler and furnace performance and play a crucial role in optimizing energy management. This, coupled with the further enhancement by Artificial Intelligence (AI), which analyzes sensor data to predict potential failures and dynamically optimize system settings for maximum efficiency, ensures that the audience is well-informed about the latest technological advancements in the industry. Heat pumps are not just emerging but transforming the industrial heating landscape, particularly for medium and low-temperature applications. Their ability to recover and reuse low-grade heat and their inherent energy efficiency make them a compelling alternative to traditional fossil fuel-based systems. The heat pump-based industrial heating equipment market is witnessing robust growth, driven by the increasing need for energy-efficient and eco-friendly solutions across diverse industrial processes. Advancements in materials science are also contributing to more efficient and durable industrial heaters. New designs for heat exchangers incorporating advanced materials like graphene coatings and ceramics are improving heat transfer efficiency and corrosion resistance, leading to longer lifespans and reduced energy loss. Nano-materials are also being explored to enhance thermal conductivity, further minimizing energy dissipation. Waste heat recovery systems are becoming standard in remodeling modern industrial heating setups. By capturing and reusing heat that would otherwise be expelled as waste, these systems significantly reduce overall energy requirements and improve the thermal efficiency of industrial processes. This includes recovering heat from flue gases to preheat water or air, reducing the primary energy input needed for heating. Developing modular and decentralized heating systems offers increased flexibility and energy efficiency. Modular units can be customized to specific heating demands and offer plug-and-play installation, reducing setup time and costs. Decentralized systems, particularly for large industrial complexes, can minimize energy loss associated with long pipe runs, ensuring consistent performance and optimized energy delivery. Policy and Regulatory Influence Government policies and regulations are pivotal in shaping the direction of industrial heater manufacturing in Canada. As enshrined in the Canadian Net-Zero Emissions Accountability Act, the federal government's commitment to achieving net-zero emissions by 2050 provides a strong impetus for industries to decarbonize their operations, including heating. Key policy instruments include investment tax credits (ITCs) for clean technology, including those that reduce carbon intensity in industrial operations. These financial incentives encourage businesses to invest in capital expenditures related to energy-efficient and low-carbon heating equipment. While the long-term stability of some of these ITCs may be subject to political shifts, it's important to note that such shifts could disrupt the industry's momentum towards energy efficiency. Moreover, stricter building energy codes and initiatives promoting energy-efficient construction and retrofits influence the demand for advanced heating solutions. These solutions, which include high-efficiency heat pumps and electrification, are gradually being adopted as provinces move towards higher energy performance standards, with a long-term goal of Net Zero Energy Ready (NZER) buildings. This regulatory push encourages the phased transition from fossil fuel heating in new constructions and promotes the widespread adoption of these advanced heating solutions. Through entities like the National Research Council Canada (NRC) and Natural Resources Canada (NRCan), the Canadian government is actively supporting research and development into low-cost, low-carbon industrial heating technologies. This collaborative effort aims to accelerate the deployment of solutions that replace or significantly reduce fossil-based industrial heat production, recover process heat, or even eliminate the need for industrial heat through alternative non-thermal technologies. The Canadian industrial heater manufacturing industry is poised and crucial for continued innovation and growth. The persistent drive for energy efficiency, coupled with increasingly stringent environmental regulations, will not just fuel but determine the development and adoption of advanced heating solutions. As Canada progresses towards its net-zero goals, industrial heater manufacturers will play a significant role as critical enablers, providing the essential technological backbone for a more sustainable and energy-efficient industrial future. The industry's capacity to adapt to evolving energy landscapes and embrace cutting-edge solutions will not just be key, but the linchpin of its sustained success. ...Read more

Read Also

Wind energy boom in Czechia: A Window of Opportunity

Wind energy boom in Czechia: A Window of Opportunity

Stanislav Cetkovsky, Director of Wind Energy Development & Operations, ČEZ
Strengthening Safety and Reducing Emissions Across Our Communities

Strengthening Safety and Reducing Emissions Across Our Communities

Gina Mace, Director of Regulatory Affairs, Summit Utilities, Inc
Achieving Operational Excellence Through Organizational Effectiveness

Achieving Operational Excellence Through Organizational Effectiveness

Earl Berry, Vice President of Engineering, Southern Nuclear
The Future of Electric Utilities

The Future of Electric Utilities

Roderick Conwell, Senior Director of Operations, the AES Corporation
Meeting the Moment: Reliability, Risk and Resilience in a Demand-Driven Energy Future

Meeting the Moment: Reliability, Risk and Resilience in a Demand-Driven Energy Future

Michael Caravaggio, Vice President, Energy Supply, Reliability, EPRI
Advancing Diversity and Inclusion in Southeast Asia

Advancing Diversity and Inclusion in Southeast Asia

Zulfa Ashida Zulkifli, Vice President of Human Resources, Velesto Energy Berhad[KLSE: VELESTO]